Conceptual Dynamics $1^{\text {st }}$ Edition Errata

Chapter 1

- P1.3-1) The center-to-center distance between the spheres should be 1.5 ft not 1.5 m .

Chapter 2

- CE2.1-2) The velocity referred to in this problem should be the average speed within the specified time interval.
- CE2.1-3) Instantaneous and average velocity should be instantaneous and average speed.
- SP2.4-5) has been created. See attached.
- RP2-10) A simpler version has been created. See attached.
- P2.2-1) Ans: $t=9.111 \mathrm{~s}, v_{\text {max }}=15.61 \mathrm{~m} / \mathrm{s}, t=6.54 \mathrm{~s}, a_{\text {max }}=2.64 \mathrm{~m} / \mathrm{s}^{2}, t=9.111 \mathrm{~s}$
- P2.2-3) Ans: $\Delta s=14 \mathrm{~m}$
- P2.2-4) Ans: $\Delta s=s_{\text {total }}=500 \mathrm{~m}$
- P2.3-3) The associated figure is labeled P2.1-8 by mistake.
- P2.4-1) Ans: a) $t=2 \mathrm{~s}, 6.5 \mathrm{~s}, \mathrm{~b}) t=3.41 \mathrm{~s}$

Chapter 3

- EP3.1-5) was eliminated (too simple). It was moved to P3.1-6.
- EP3.1-7) The average acceleration should be $6 \mathbf{i}+2 \mathbf{j}$ in the solution.
- SP3.2-10) was added. See attached.
- EP3.3-8) Part b) of the question should ask you to find 'the total acceleration and velocity of the car as it approaches point B.'
- SP3.3-12) was added. See attached.
- EP3.4-3) \ddot{r} was eliminated from the answer choices because it cannot be determined.
- EP3.6-1) Figure labeling in PPT. Fig. B should be labeled C.
- PPT Joints figure does not match the book. See the website for the current PPT file.
- RP3.3) Velocity should be speed.
- RP3.8) Answer b) should be, "Ball A has a larger initial velocity."
- RP3-16) The units on constants b and d should be meters.
- RP3-17) The units of the initial bike speed should be $\mathbf{k p h}$. The equation for the total height of the bike in the givens should be $h=y_{B}+5 \mathrm{~m}$.
- RP3-21) Moved to the P3.18-5 and replaced with a new problem. See attached.
- P3.5-4) The units in the answer should be ft / s.
- P3.8-3) Answer is missing the acceleration $a=3.5 \hat{e}_{t}+18.5 \hat{e}_{n} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
- P3.10-1) The acceleration's leading constant should be +1 not -1 .
- P3.10-5) Ans: $a=9.6 \mathrm{~m} / \mathrm{s}^{2}$
- P3.11-7) Solution is not physically realizable. Numbers need to change in the problem statement.
- P3.12-2) Evaluate the time at $\theta=30^{\circ}$
- P3.14-4) The river speed is $v_{R}=2$ knots

Chapter 4

- P4.1-4) $\theta(t)$ should be $\theta(t)=t^{3}-10 t^{2}+2$.
- P4.2-2) Ans: Both ω and α should be in the -k direction.
- SP4.2-7) was added. See attached.
- SP4.3-7) was added. See attached.
- P4.4-1) is a fixed axis problem and was moved to P4.2-6.
- P4.6-2) Ans: a) $\mathbf{v}_{B}=-v_{C}(\mathbf{i}-\mathbf{j}), \mathbf{v}_{D}=2 v_{C} \mathbf{i} \quad$ b) $\mathbf{v}_{B}=v_{C}(\mathbf{i}-\mathbf{j}), \mathbf{v}_{D}=2 v_{C} \quad$ c) $\mathbf{v}_{B}=v_{C}(\mathbf{i}-\mathbf{j})$, $\mathbf{v}_{D}=-2 v_{C} \mathbf{i}$ d) $\mathbf{v}_{B}=2 v_{C}(\mathbf{i}-\mathbf{j}), \mathbf{v}_{D}=2 v_{C} \mathbf{i}$
- P4.9-2) Answer: $\omega_{c d}=0.0873 \mathrm{rad} / \mathrm{sccw}$
- P4.10-1) Units on the answer should be rad/s \mathbf{s}^{2}.

Chapter 5

- Conceptual Example 5.2-5 PPT answers are incorrect. Correct answers should be " 3 , b, 2, a".
- SP5.6-13) The radius and its time derivatives are in terms of inches and need to converted to feet. The answers are $N=(\sin \theta+2.68 \sin (3 \theta)+2.9) \mathrm{lb}$ and $F=(0.194 \cos (3 \theta)+\cos \theta) \mathrm{lb}$.
- SP5.7-4) was added. See attached.
- P5.3-1) Ans: $\ddot{x}=-(k / m) x$
- P5.4-5) was added.
- P5.9-3) Positions x and y in the problem statement should be x_{1} and x_{2}, respectively, to match the figure.
- P5.11-2) This problem was updated to make it different from the EP within the text. Change μ_{sb} to 0.35 and the ramp angle to 45°. This will make the Ans: $a_{B / A}=3 \mathrm{ft} / \mathrm{s}^{2}$.

Chapter 6

- SP6.6-5) was added. See attached.
- P6.4-2) As written, this problem is not physically possible. Change α to $0.5 \mathrm{~g} / \mathrm{b}$ and the solution becomes $O=0.5 \mathrm{~W}$.
- P6.5-1) was as stated was moved to the advanced section P and replaced with a simplified version of the problem.
- P6.5-6) Ans: $\alpha=12.6 \mathrm{rad} / \mathrm{s}^{2}$
- P6.5-7) The units on I_{o} should be $\mathbf{k g}-\mathbf{m}^{2}$.
- C6-1) Find the tension for the first $\mathbf{0 . 1} \mathbf{~ s}$.

Chapter 7

- Page $7-52$ in the Equation derivation box: The first line should read, "The derivation of Equation $7.8-2$ uses the fact that $d \mathbf{r}=\mathbf{v} d t$ and ..."
- P7.4-1) The velocity should be $v_{3}=\mathbf{2 . 4 5} \mathbf{~ m} / \mathrm{s}$.
- P7.4-8) $H=20 \mathrm{ft}$
- P7.5-1) Answer: $\ddot{\theta}+\frac{g}{L} \sin \theta=0, \theta(t)=\theta_{o} \cos (\omega t), \omega=\sqrt{\frac{g}{L}} \mathrm{rad} / \mathrm{s}, \theta_{o}=\frac{\pi}{36} \mathrm{rad}$
- P7.8-1) In the answers, a) $P=0.398 \mathrm{hp}$

Chapter 8

- Second part of CE8.5-1 was eliminated.
- SP8.5-7 was added. See attached.
- P8.1-5) Ans: $\omega_{A}=2.41 \mathrm{rad} / \mathrm{s}, \omega_{B}=7.24 \mathrm{rad} / \mathrm{s}$
- P8.2-2) Ans: $v=2.62 \mathrm{~m} / \mathrm{s}$
- P8.5-4) The angular velocity is in the clockwise direction.
- P8.5-5) The associated figure is labeled P8.5-6. It should be labeled P8.5-5.

Chapter 9

- CE9.2-1) Figure B midpoint should be labeled 2.5 not 4.
- Solved Problem 9.4-5) See attached
- Equation 9.7-8 should be $\mathbf{H}_{0,2}=\mathbf{H}_{0,1}$

$$
\sum\left(\mathbf{r}_{i, 2} \times m_{i} \mathbf{v}_{i, 2}\right)=\left(\mathbf{r}_{i, 1} \times m_{i} \mathbf{v}_{i, 1}\right)
$$

- EP9.7-3) The problem statement should ask for the magnitude of the force as a function of time.
- SP9.7-6) See attached
- Equation 9.7-8 should be labeled angular momentum not angular impulsemomentum and the equation is $\mathbf{H}_{0,2}-\mathbf{H}_{o, 1}=\sum\left(\mathbf{r}_{i, 2} \times m_{i} \mathbf{v}_{i, 2}\right)-\sum\left(\mathbf{r}_{i, 1} \times m_{i} \mathbf{v}_{i, 1}\right)=0$
- P9.1-1) Answer: $F=14.05 \mathrm{lb}$
- P9.1-6) Ans: $v_{s, 2}=2.29 \mathrm{mph}, v_{s, 2}=0$
- P9.2-9) Ans: $\Delta x=0.54 \mathrm{~m}$
- P9.2-10) Should be placed in the angular impulse and momentum section. Lengths are $l_{1}=1 \mathrm{ft}, l_{2}=3 \mathrm{ft}$. Ans: $\theta=27.6^{\circ}$
- P9.4-1) $W=2 \mathrm{lb}$
- P9.4-5) $\dot{\mathbf{H}}_{o}=\left(y_{P} F_{2}-z_{P} F_{1}\right) \mathbf{i}-x_{P} F_{2} \mathbf{j}-x_{P} F_{\mathbf{1}} \mathbf{k}$
- P9.4-6) Answer d) $\omega=5 v / 4 L \mathrm{rad} / \mathrm{sccw}$

Chapter 10

- Conceptual Example 10.5-2) The perpendicular distance between the bar and point O is $l / 2$.

Appendix A

Appendix B

- SPB.2-2) The solution to $-3 y+x^{2} \leq 8+y$ should by $y \geq\left(8-x^{2}\right) /-4$
- SPB.4-3) See attached
- SPB.5-4) The second minimum stated is the local minimum. The actual minimum occurs at $t=0$ and is $v=3$.
- SPB.6-1) $v_{t=2}=-2 \mathrm{~m} / \mathrm{s}$

Appendix C

Appendix D

