Solved Problem 3.3-12

A car drives along a curvy mountain road. The driver uses the gas pedal to uniformly accelerate the car from 20 mph to 40 mph in 30 seconds around a constant 1000-ft radius curve. Determine the car's acceleration as a function of time.

```
Given: \(v_{o}=20 \mathrm{mph}=29.33 \mathrm{ft} / \mathrm{s}, \quad v_{f}=40 \mathrm{mph}=58.67 \mathrm{ft} / \mathrm{s}\)
    \(\Delta t=30 \mathrm{~s}, \quad \rho=1000 \mathrm{ft}\)
```


Find: a

Solution:

Getting familiar with the problem

This problem mentions three things that should steer you in the direction of using the $n-t$ coordinate system.

1. It mentions a curvy road. The $x-y$ coordinate system is not ideal for use on curvy motion, especially when the x - and y-directions are coupled.
2. It mentions and acceleration in the direction of motion (i.e. the driver uses the gas pedal to accelerate) or a tangential acceleration.
3. It also mentions the radius of the curve that the car is traveling on.

The first thing you should do once you have decided to use the n-t coordinate system is to write the acceleration equation down. This gives you a sense of what quantities you have, which you need to find, and most of all, it reminds you that there are two components to the acceleration.

$$
\mathbf{a}=\dot{v} \mathbf{e}_{t}+\frac{v^{2}}{\rho} \mathbf{e}_{n}
$$

Tangential acceleration

The tangential acceleration may be calculated by applying the average acceleration equation in the tangential direction.
$a_{t}=\dot{v}=\frac{\Delta v}{\Delta t}=\frac{58.67-29.33}{30}=0.98 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$

Velocity

The velocity is always in the tangential direction, therefore, we may use the constant acceleration equation (because $a_{t}=$ constant) to determine the velocity as a function of time.

$$
v=a\left(t-t_{o}\right)+v_{o} \quad v=a_{t} t+v_{o}=0.98 t+29.33 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

Total acceleration

Using the normal and tangential acceleration equation, we can determine the total acceleration of the car.
$\mathbf{a}=\dot{v} \mathbf{e}_{t}+\frac{v^{2}}{\rho} \mathbf{e}_{n} \quad \mathbf{a}=0.98 \mathbf{e}_{t}+\frac{(0.98 t+29.33)^{2}}{1000} \mathbf{e}_{n}$

To get a sense of how much the normal acceleration increases as the velocity increases, let's construct a plot of the tangential and normal accelerations of the car.

