## Solved Problem 3.2-10

An air gun shoots is capable of shooting a light plastic ball at various initial velocities $\left(v_{o}\right)$ at various angles ( $\theta$ ) relative to the horizontal. It is desired to select an appropriate $v_{o}$, $\theta$ combination that would allow the ball to strike a target a horizontal distance of $D$ and a vertical distance of $H$ away, as shown in the figure. Derive a general equation that would allow you to calculate the appropriate $v_{o}$ given $\theta$ or allow you to calculate the appropriate $\theta$ given $v_{o}$. The
 equation should only be a function of $H, D, g, v_{o}$, and $\theta$. Then, calculate $v_{o}$ if $\theta=40^{\circ}$ for $D=15 \mathrm{ft}$ and $H=10 \mathrm{ft}$.

Given: $D=15 \mathrm{ft}, H=10 \mathrm{ft}$
Find: $v_{o}$ if $\theta=40^{\circ}$

## Solution:

## Range

Because the $x$ - and $y$-directions are independent and may be analyzed as two separate rectilinear problems, the first step when analyzing a projectile problem should be to decompose the initial velocity into its $x$-and $y$-components.

$$
\mathbf{v}_{o}=v_{o}(\cos \theta \mathbf{i}+\sin \theta \mathbf{j})
$$

Neglect air resistance, the $x$-direction velocity is constant. We can use this fact to determine the range.

$$
x=v_{\chi} t+x_{o} \quad D=v_{o} \cos \theta t_{B} \quad t_{B}=\frac{D}{v_{o} \cos \theta}
$$

## Altitude

The acceleration in the $y$-direction is equal to $-g$.

$$
y=-\frac{1}{2} g t^{2}+v_{y o} t+y_{o} \quad H=-\frac{1}{2} g t_{B}^{2}+v_{o} \sin \theta t_{B}
$$

Substituting $t_{B}$ obtained in the range equation we get a relationship that relates $v_{o}$ and $\theta$.


$$
v_{o}=\left[\cos \theta \sqrt{\frac{2}{g}\left(\frac{\tan \theta}{D}-\frac{H}{D^{2}}\right)}\right]^{-1}
$$

If $\theta=40^{\circ}, v_{o}=48.8 \frac{\mathrm{ft}}{\mathrm{s}}$

