RP2-10) A boat going down river is travels at 25 knots (1 knot $=1.151 \mathrm{mph}$) relative to the shore for 1 minute before cutting its engines. The river current flows at 2 knots causing the boat's velocity relative to the shore to follow the function $v=43.2-\exp ((t-60) / 68) \mathrm{ft} / \mathrm{s}$ after the engines are cut, where t is in seconds. Determine the distance traveled by the boat in 5 minutes.

Given: $\quad v_{1}=25$ knots $=42.2 \mathrm{ft} / \mathrm{s}$

$$
\begin{aligned}
& v=43.2-\exp ((t-60) / 68) \mathrm{ft} / \mathrm{s} \\
& t_{B}=1 \mathrm{~min}=60 \mathrm{~s} \\
& t_{C}=5 \mathrm{~min}=300 \mathrm{~s}
\end{aligned}
$$

Find: s_{C}
Solution:
Find s_{B}.
$S_{B}=$ \qquad

