RP2-10) A boat going down river is travels at 25 knots (1 knot = 1.151 mph) relative to the shore for 1 minute before cutting its engines. The river current flows at 2 knots causing the boat's velocity relative to the shore to follow the function $v = 43.2 - \exp((t-60)/68)$ ft/s after the engines are cut, where *t* is in seconds. Determine the distance traveled by the boat in 5 minutes.

<u>Given:</u> $v_1 = 25$ knots = 42.2 ft/s $v = 43.2 - \exp((t - 60) / 68)$ ft/s $t_B = 1$ min = 60 s $t_C = 5$ min = 300 s

Find: s_C

Solution:

Find *s*_{*B*}.

Find s_C .

2 - 41

 $s_C =$